染色体外遗传(染色体以外遗传因子表现的遗传现象)
染色体外遗传
次浏览
更新时间:2023-05-25
基本信息
中文名 | 染色体外遗传 |
外文名 | extrachromosomal inheritance |
别名 | 核外遗传 |
类型 | 线粒体遗传、叶绿体遗传 |
遗传特点 | 自主复制 |
定义
染色体外遗传
染色体外遗传
简史
染色体外遗传
P.米凯利斯从 20年代开始对柳叶菜属(Epilobium)植物连续进行了二、三十年的研究,分析了若干种性状的母体遗传现象。在这一段时期中还出现了一些有关细胞质遗传的名词。例如1937年日本学者今井提出质体基因,用来指叶绿体中的遗传因子;1939年英国细胞学家C.D.达林顿提出细胞质基因,用来泛指细胞质中的独立自主的遗传因子。1937年法国学者P.莱里蒂埃报道了果蝇对于二氧化碳敏感性状的非孟德尔式遗传现象。随后证实这种现象是果蝇被σ病毒感染所致。
1943年美国学者M.M.罗兹在玉米中报道一种白色条纹叶──埃型条纹性状的非孟德尔式遗传现象。后来知道埃型条纹性状来源于核基因突变,这是核基因和细胞质基因相互作用的第一个例子。
40年代中微生物遗传学研究广泛开展以后又陆续在酵母菌、脉孢菌等微生物中发现染色体外遗传现象。1943年美国学者T.M.索恩本在双小核草履虫中发现放毒性的遗传属于非染色体遗传,而且证明这是由一种和草履虫共生的微生物卡巴带来的性状。1949年法国学者B.埃弗吕西等在啤酒酵母中发现了小菌落突变型 (petite,p-,它的线粒体中缺少某些细胞色素成分。小菌落突变型有染色体外遗传和染色体遗传两类,前者称为营养型小菌落,后者称为分离型小菌落。这两类突变型的存在说明线粒体的形成同时受核基因和线粒体本身的控制。1952年美国学者J.莱德伯格继 50年代初大肠杆菌中的F因子(见细菌接合)和λ噬菌体中的溶源性(见转导)的发现之后,提出了质粒这一名词,用来指染色体外的全部独立自主的遗传因子,包括σ因子等共生生物、线粒体和叶绿体等细胞器以及F因子这一类单纯的DNA分子。不过现在质粒这一名词已用来专指最后一类遗传因子了。1963~1964年分别确证了线粒体和叶绿体中存在着DNA,从此以后染色体外遗传的研究已逐渐成为分子遗传学中的重要领域。
判断依据
正反交结果
染色体外遗传
不分离现象
多数微生物是单倍体(见染色体倍性),染色体基因在杂交子代中按 1:1分离。例如啤酒酵母的分离性小菌落和野生型的杂交子代中双亲的类型按 1:1分离,这说明分离性小菌落的遗传属于染色体遗传范畴。可是表型同属于呼吸缺陷的营养性小菌落和野生型的杂交子代全部都属于野生型,说明营养性小菌落的遗传属于染色体外遗传。脉孢菌的po突变型除了表现正反交结果不相同现象以外,实际上也表现不分离现象。
性状随着染色体以外的细胞质成分的转移而改变,按照生物的特性,可以通过不同的途径把一个生物的细胞质转移到另一生物中,如果后一生物因此而获得前一生物的某些性状,说明这一性状的遗传方式属染色体外遗传。细胞质可以通过多种方式转移。
接合转移
大肠杆菌(Escherichia coli)可以通过细菌接合在不发生染色体转移的情况下转移它的 F因子,而且使接受F因子的细菌的后代都具有F因子,说明F因子的遗传属染色体外遗传。同样证实属染色体外遗传的还有草履虫的放毒性、大肠杆菌以及其他一些细菌的抗药性等。
转移方式
核移植
染色体外遗传
消除
某些性状可以由于一些环境因素的处理而被消除,这也是判断染色体外遗传的一种依据。例如吖啶类染料可以使一些抗药性细菌变为敏感的细菌;加速草履虫放毒品系的分裂速度可以使它变为非放毒品系等。染色体基因突变型可以通过回复突变而成为原来的野生型,可是被消除的性状不再重新出现,说明这些性状的遗传依赖于染色体外的遗传因子。
物质基础
质粒
见质粒。
线粒体
酵母菌的小菌落突变型就是线粒体发生缺陷的结果。
酵母菌中呈现染色体外遗传的性状除了小菌落突变型以外,还有氯霉素抗性(chloramphenicol resistance,cap)、红霉素抗性(erythromycin resistance,ery)、寡霉素抗性(oligomycin resistance,oli)、巴龙霉素抗性(paromomycinresistance,par)等。线粒体遗传学研究主要通过三个方面进行:
重组分析
分析方法在原则上和测定减数分裂中基因重组频率的基因定位方法相同。
缺失分析
小菌落突变型(p-)可以通过溴化乙锭(EB)等诱发,这样产生的小菌落突变型常常是线粒体DNA缺失的结果。邻接的基因常常同时缺失,所以通过许多p-菌株的抗性基因或其他基因的共缺失的分析,可以测定各个基因的相对位置。分子杂交和限制性核酸内切酶物理图谱分析 结合基因定位和通过分子杂交和限制图谱等研究,可以初步画出啤酒酵母的线粒体的遗传学图(图4)。
啤酒酵母的线粒体遗传学研究中还发现类似于大肠杆菌的性别(见细菌接合)的所谓极性现象(不同的极性或极性因子用ω+和ω-表示)。此外,酵母菌的线粒体遗传学研究中,还有两项具有更广泛的生物学意义的课题。一是断裂基因如细胞色素b氧化酶基因(cytochromeb oxi-dase,box)的研究,发现这一基因的内含子编码的所谓成熟酶催化切除mRNA中的内含子成分的反应。另一是关于线粒体的遗传密码的研究,这一研究提供了关于密码进化的有力证据(见分子进化)。
叶绿体
最早发现的染色体外遗传是高等植物的叶绿体的遗传。目前叶绿体的遗传学分析仍以莱因哈德衣藻(Chlamydomonas reinhardi)最为详尽,它的研究从1954年美国学者R.塞杰取得呈现不分离现象的抗链霉素突变型Sr-500开始。叶绿体的遗传学分析主要通过基因重组分析和纯合化分析。纯合化分析的原理和利用体细胞重组进行基因定位的原理相同,不过在体细胞重组分析中,基因离着丝粒愈远则纯合化频率愈高,而在这里则假定环状的叶绿体 DNA以某一特定部位附着在叶绿体的膜上,任何基因离这一部位愈远则纯合化频率愈高或进程愈快。通过这些研究并结合分子杂交等方法的运用,绘出了环状叶绿体基因的遗传学图(图5)。
相互作用
关于染色体外遗传因子和染色体基因的的相互作用关系的研究主要依靠下列几种方法:①遗传方式的分析。玉米的白色条纹叶性状的出现是基因突变的结果,可是它的遗传却是非孟德尔式的。酵母菌的小菌落突变型有分离性的(即染色体的)和营养性的(即染色体外的)两类。草履虫的卡巴颗粒的遗传方式属于染色体外遗传,可是核基因K的存在对于保持染色体外的卡巴颗粒却是必要的。这些都说明保持这些遗传性状都需要核基因和细胞质基因的相互作用。②分子杂交。一个RNA分子只能和转录它的这部分DNA进行分子杂交。因此通过DNA-RNA分子杂交,可以测定编码某一细胞器成分的基因是在这一细胞器的 DNA分子上还是在染色体上。例如,分子杂交结果说明梨形四膜虫(Tetrahymenapyriformis)的一部分线粒体 tRNA由染色体基因所编码。③蛋白质合成分析。例如已经知道啤酒酵母的细胞色素C氧化酶是在线粒体的内膜上,由三个大亚基和四个小亚基构成。离体的酵母菌的线粒体能合成三个大亚基而不能合成四个小亚基,说明前者由线粒体基因编码而后者并不由它编码。此外,已经知道抑制剂亚胺环己酮抑制细胞质中的蛋白质合成而红霉素则抑制线粒体中的蛋白质合成。在红霉素存在的情况下酵母菌的细胞色素氧化酶三个大亚基的合成被抑制,而亚胺环己酮则不。上述事实都说明同一线粒体的一个部分为线粒体基因编码,而另一部分则为染色体基因编码。
已经知道线粒体中由染色体基因和线粒体基因共同参与合成的成分至少有tRNA、腺苷三磷酸酶、细胞色素氧化酶、细胞色素b;叶绿体中染色体基因和叶绿体基因共同参与合成的至少有核糖体蛋白质、tRNA、叶绿体的外膜以及片层结构和光合作用酶系Ⅰ、Ⅱ。对烟草叶绿体中核酮糖磷酸羧化酶合成的控制也曾进行比较深入的研究。
染色体基因和染色体外基因的相互作用还涉及细胞器的装配问题,在衣藻中发现了不少于20个影响线粒体核糖体装配的基因,而且其中的 7或 8个是在染色体上。它们中的一部分突变型不能装配核糖体大亚基,一部分不能装配小亚基,另外一部分不能装配大小两种亚基。叶绿体的形成同样是一个极为复杂的过程,在大麦中曾发现86个染色体基因和叶绿体的形成有关。
细胞器的形成还受环境的影响,在缺氧条件下生长的酵母菌形成原线粒体。同样,在无光条件下植物只形成原叶绿体,在有光条件下原叶绿体又转变成为叶绿体。细胞器的装配机制和它们的双重控制机制都有待于深入的研究。
演化
早在1890年德国组织学家R.阿尔特曼便认为线粒体来自共生的细菌,1905~1910年K.C.梅列日科夫斯基同样认为叶绿体来自共生的生物。在细胞器遗传的研究取得迅速发展以后,1970年L.马古利斯提出了更为完整的共生假设,认为在原始的缺氧环境中首先出现了厌氧的原核生物。随着营光合作用生物的出现,地球上出现了好氧的原核生物和原真核生物,这些原真核生物不具备呼吸酶系。以后好氧原核生物在原真核生物中进行共生,共生体逐渐发展成为好氧的真核生物;营光合作用的原核生物在真核生物中进行共生,共生体逐渐发展成为营光合作用的真核生物。
1972~1975年R.A.拉夫和H.J.马勒提出非共生进化学说,认为原始的真核生物具备呼吸酶系,而且这些酶系和细菌一样是在细胞膜上。当细胞变大时,膜向里面折叠,并且终于脱离细胞,这些膜把细胞中的带有某些染色体基因的质粒包裹起来而成为线粒体。另外一些假设并不假定先有共生生物或质粒的存在。例如L.赖恩德斯在1975年提出假说,认为线粒体中的DNA来源于原核细胞本身,被它本身的膜所包被起来,然后通过演变而成为线粒体DNA。
虽然每一种假设的提出都根据了一些事实,但是同样也都面临着一些难以解释的现象。细胞器遗传本身就是个复杂的过程,它们的演化问题也只能留待今后再作结论。
细胞质遗传研究的最重要的实践应用,是雄性不育(见不亲和性和杂种优势)。